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Based on the film theory and by means of linerization of the principal differential balance equa
tion an approximate expression has been derived for the enhancement of transfer of species A 
from the interface by the following reaction with the components Band C: A + m B ->- n C + 
: p P and A -t C ~ D. The former of thesc reactions is irreversible while thc second is an equi

librium one. The asymptotic behaviour of the derived relationships has been verified and an error 
has been estimated of the prediction of the enhancement factor due to the linearization. 

----- -------------

Many industrially important absorption or extraction processes take place under 
the conditions of transfer of the active component from the interface into the bulk 
of the phase being enhanced by one or more reactions of this component with the 
active components of this enriched phase. If these reactions are fast as to take 
place predominantly in the diffusional film adhering to the inteface it is advantageous 
to express the enhancement of the mass transfer rate by the so called enhancement 
factor. For the case of simple reactions there are numerous solutions available, 
summarized e.g. in ref. I. These solutions express the dependence of the enhancement 
factor on concentration variables and system parameters. Mass transfer accompanied 
by a set of reactions, however, has been investigated only for some particular cases. 
The rate of mass transfer of a species A, accompanied by reactions A + B ~ C, 
C + B ,=" E, has been studied in ref.2-4. Ondas - 7 and coworkers have derived 
an approximate expression for the enhancement factor for the case of consecutive 
irreversible reactions A + m B -+ n C, A + P C -+ E and have submitted solutions 
for certain types of reversible reactions. Considerable attention has been paid to the 
effect of mass transfer on selectivity in a system of consecutive reactions8 -12. 

The aim of this work has been to provide a solution for the enhancement factor 
of a species A when two consecutive reactions of the type A + m B -+ n C + p P, 
A + C ,~o, D take place simultaneously while the former may be regarded as an ir
reversible and the latter as an equilibrium one, i.e. instantaneous and reversible. 
An example of such a system is oxidation of potassium ferrocyanide in the water 
phase by iodine transferred from the organic phase. The rate of transfer of iodine 
in this case is affected not only by the redox reaction, which may be regarded over 
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a wide range of concentrations as an irreversible reaction, but also by the reaction 
of iodine with iodide ions, this latter being a reversible and instantaneous reaction. 

FORMULA nON OF THE MODEL 

Species A diffuses from the interface into the phase containing specks B while 
simultaneously reacting, following the scheme 

A+mB ---> nC+pP. (A) 

The rate of this reaction is given by 

(1) 

and is sufficiently high so that the reaction (A) takes place thoroughly in the dif
fusional film adhering to the interface. Simultaneously with this reaction there is 
another reaction taking place in the diffusional film of the component A with the 
component C appearing as a product of the reaction (A): 

A + C ~ D. (B) 

This reaction is practically instantaneous and reversible with the equilibrium constant 

(2) 

The rates of formation of individual components, r i , are constraim:d by the fol
lowing relationships 

(3) 

(4) 

(5) 

Since the only component, transferred across the interface, is the component A, 
one can, in accord with Eqs (1) and (3)-(5), write down the balances of the fluxes 
of the components through the diffusional film in the form of the following dif
ferential equations 

(6) 

(7) 
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and the balance of the species B in the form 

(8) 

The set of differential Eqs (6)-(8), with the boundary conditions 

x = 0, cA = c!, dCB/dx = 0 (9) 

(10) 

and the equilibrium condition (2) define the concentration profiles of individual 
components in the diffusional film sketched in Fig. la. 

For the purpose of obtaining an approximate solution of the set (6)-(10) it is 
convenient to introduce the following dimensionless variables 

z = x/c5 (11) 

Yi = cdc! (12) 

qj = Di/DA (13) 

'" = qDKc! (14) 

a b c 

y y y 

z z z 

FIG. 1 

Concentration profiles of the reaction components in the diffusional film, a) general case, b) " _ 
- cr.}, both reactions irreversible, c) M - 00, both reactions instantaneous 
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(15) 

(16) 

Integration of the differential Eqs (6) and (7) with the boundary conditions (9) and (10) 
may be expressed with the aid of Eqs (11) - (15) in the form of relationships between 
the dimensionless concentrations of species in the diffusional film 

(17) 

(18) 

After rendering the differential equation (8) dimensionless by using expressions 
(11)-(15) and after elimination of d2Yc/dz2 with the aid of Eq. (17) a differential 
equation is obtained in the form 

where 

Z = qc +(~±-1) YA M YB 

qc + X(YA + qcYc) y~ 

Solution of the differential equation (19) with the boundary conditions 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

determines for given values of the quantities Y·, qi' M and x the value of the enhance
ment factor CPo 

Since the differential Eq. (19) does not have an exact analytical solution, the 
enhancement factor must be found either through a numerical solution of the above 
boundary value problem or from an approximate solution. 

In the folowing we shall derive an approximate solution for the enhancement factor 
and estimate its accuracy from comparison with numerically obtained solutions. 
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ApPROXIMATE EXPRESSION FOR THE ENHANCEMENT FACTOR 

In seeking a suitable approximation for the enhancement factor we shall require 
that the resulting expressions reduce to the accurate solutions for asymptotic cases 
for which such a solutions exist. It turns out that the course of the concentration 
profiles near the interfacial surface is little affected by the second and the third term 
of the differential equation (19). These terms completely vanish for the special case 
of x = 0 and x --. 00. In order to obtain an approximate solution let us linearize 
the differential equation by neglecting the above two terms and putting the variable Z 
equal its value at the interface, Z*. 

Integration of the obtained linearized equation 

(26) 

with the boundary conditions 

(27) 

yields an expression for the gradient of the dimensionless concentration of the species 
A at the interface, (dYA/dz )z=o. Its substitution into Eq. (24) yields in turn an ex
pression for the enhancement factor 

(28) 

where 

Z* = qc + (n + 1) x M Y: . 
qc + x(l + qcY~) y~ 

(29) 

The quantity ~ represents the dimensionless penetration depth of species A from the 
interface into the diffusional film. 

If x --+ 00, i.e. if both reactions are irreversible, the reaction zone, where the reaction 
(A) takes place, reduces to a reaction plane, its dimensionless distance from the 
interface being fixed by ~, see Fig. lb. For this asymptotic case this distance may be 
expressed from the condition of equality of the fluxes of reacting species using 
van Krevelen's solution13 for the flow of the species A through the reaction zone 
of the reaction (E). The stipulation that the approximate solution reduces to this 
asymptotic case for x --+ 00, while simultaneously satisfying also the exact solution 
is met by the following function for the dimensionless distance ~: 

~-l- --(
X )Z 

qc + X .J(c!J2 - Z*) 
(30) 
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The expressions (28)-(30), together with the equations expressing the dimensionless 
concentrations of species Band C at the interface, following from Eqs (17) and (18) 

implicitly define the enhancement factor f/J. 

(31) 

(32) 

If the variables M or x assume their limiting values the above relationships for the 
calculation of f/J = f/J(M, x) significantly simplify. 

If M = 0, there is only one equilibrium reaction (B) taking place in the system. 
From Eq. (29) then follows Z* = 0 and as a limit of the right hand side of Eq. (28) 
for Z* -+ 0 we obtain the following relationship 

(33) 

Upon elimination of Yc and ~ from Eqs (30), (31) and (33) there follows for the 
enhancement factor that 

(34) 

which is the exact expression derived by Olander14 for the equilibrium reaction (B). 
If M -+ 00 we have a system of two instantaneous reactions. From Eqs (31) and (32) 

then there follows for the dimensionless concentration of the component B at the 
interface that 

Taking the limit M --+ 00 there follows from Eq. (28) that y: --+ o. Substituting this 
into Eq. (35) we obtain for the enhancement factor the following relationship 

The concentration profiles of the reaction components for this case are sketched 
in Fig. le. Both reactions take place in the reaction plane z = ~ splitting the dif
fusional film into two diffusional zones. By integration of the differential equations (6) 
and (7) for both these zones separately and elimination of the unknown distance 
of the reaction plane and the unknown concentrations of the species C and D in this 
plane it may be shown that Eq. (36) is an exact solution. 

If x = 0 there is only one reaction (A) taking place in the system and Eq. (28) 
reduces to 

(37) 
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which is the familiar expression derived by Van Krevelen and Hoftijzer13 for an ir
reversible second-order reaction (A). 

If x -+ 00 we have a system of two irreversible reactions. From Eq. (31) there 
follows for this case that y~ -+ 0 and as a limit of Eqs (28), (30) and (32) we obtain 

(38) 

(39) 

(40) 

The concentration profiles of the reaction components in the diffusional film are 
shown in Fig. lb. The plane z = ~ separates the diffusional films into the reaction 
zone (0 < z ~ 0 and the diffusional zon(( ~ < z ~ 1). In the reaction zone both 
reactions take place simultaneously while the component C, appearing at a finite 
rate by the reaction (A), is instantaneously consumed by the reaction (B). In this 
zone thus the transported component A reacts according to an overall reaction 
scheme 

(n + 1) A + In B -+ n D + P. (c) 

In reaction plane an instantaneous reaction (B) takes place which maintains the 
concentrations of species A and C at a zero level. In the diffusional zone we have 
pure diffusion of the species C and B from the bulk phase toward the reaction plane 
and of the reaction products D and P into the bulk phase only. It may be shown that 
Eqs (38)-(40) are identical with the results obtained as a combination of Van Kreve
len's solution for the reaction zone with the relations describing diffusion of the 
components in the diffusional zone. If the concentration of C in the bulk phase 
vanishes, Yc = 0, then, according to Eq. (39), ~ = 1, i.e. the reaction plane co
incides with the edge of the film and Eqs (38) and (40) reduce to Van Krevelen's 
solution for the transport of species A accompanied by the chemical reaction (C). 

DISCUSSION 

In order to assess the reliability of the proposed approximate solutions and for the 
purpose of the determination of their practical applicability it is important to estimate 
the error introduced into the solution by linearization of Eq. (19). For this purpose 
it is convenient to plot the region of the real solution as a dependence of the enhance
ment factor on the variables M, x/ex + qc) for given concentration and diffusivity 
conditions. Fig. 2 shows that the region of the real solution in this map is delimited 
by four lines representing the asymptotic solutions for the limiting values of para
meters M and x. 
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As it has been shown in the preceeding paragraphs, for the asymptotic situations 
M ~ 0 and M ~ 00 the approximation changes into the exact expressions (34) 
and (36). If" = 0, the approximation reduces to that of Van Krevelen, the accuracy 
of which has been discussed in detaiJ, for instance, in refs15 •16 and appears quite 
sufficient for practical needs. Expression of the enhancement factor for the asymtotic 
case" ~ 00 by Eqs (38)-(40) changes, for a finite value of the reaction modulus M, 
for yg = 0 also to Van Krevelen's solution, except that the stoichiometry changes 
to that of the reaction (C). It may be shown that the accuracy of the proposed ap
proximation increases in this case with increasing value of yg and that the error 
is thus always less or at most equal to the error of Van Krevelen's approximation 
of the enhancement factor for a second-order reaction. 

The accuracy of the approximation in the general case was estimated from com
parison of the results with the numerical solution of the set (19)-(25). For purpose 
of the numerical solution the second-order differential equation (19) was transformed 
into a set of two first-order differential equations with the initial conditions 

where y~ was given by Eq. (31). 

Eq.(]7J Eq.(3]J 

FIG. 2 

Comparison of accurate and approximate 
values of the enhancement factor (points 
represent values computed from approximate 
relations). YB = 10, Yc = 0·1, qi = 1,111 = 

=n=2 

FIG. 3 

Comparison of accurate and approximate 
values of the enhancement factor. YB = 100, 
Yc = 10, qi = 1, m = n = 2 
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Since the value of rP for the initial conditions was not known, an iterative approach 
was employed while the accuracy of the estimate was checked by testing the validity 
of the boundary condition (25). 

A comparison of the exact solution of the asymptotic cases with their numerical 
solution has shown that the employed integration method yields results with an ac
curacy better than 0·1 % in determining the value of rP. The set or"equations (19)- (25) 
was solved numerically in the following range of parameters: 

for qi = 1, 111 = n = 2. 

A comparison of the obtained results with the proposed approximate solution 
has shown that the proximate solution yields in the investigated ranges of variable 
values of the enhancement factor with an accuracy better than 8%. The comparison 
of both solutions for selected values of variables is illustrated in Fig. 2 and 3. 

It has been found that similarly as in the illustrated case the dependence of the 
enhancement factor on the variable x/(x + qc) and thus on x displays in the majority 
of cases a maximum. In a given system thus the transfer of the species A may be 
enhanced more if one of the reactions is reversible than if both reactions are irre
versible. This rather unexpected dependence may be explained by the fact that the 
flux of the component A, according to Eqs (6) and (9) is a sum of two terms pro
portional to the concentration gradient of the species A and D at the interface. 
The gradient of the species A at the interface vanishes for limiting values of x. If 
x = 0 the reaction (B) does not take place and since the component D does not 
cross the interface nor is it produced here, its concentration gradient is zero. If x -+ 00 

the reaction (B) takes place in the reaction plane, the component C does not exist 
at the interface and hence the component D cannot be produced here while its 
concentration gradient approaches zero. As has been shown by numerical calculations 
the concentration gradient of the species D at the interface in dependence on x 
passes through a maximum. For this reason it is apparent that the enhancement factor 
need not have a monotous course in dependence on the variable x and may display 
maxima. 

It may be concluded that the proposed approximation describes well the enhance
ment factor for the whole range of variables M and x. Its error does not exceed that 
of Van Krevelen's solution for a second-order reaction which is an accuracy satisfac
tory for engineering calculations of the rate of mass transfer across the interface. 

LIST OF SYMBOLS 

c concentration 
D diffusivity 
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J flux of species 
kR rate constant of reaction (B) 
K equilibrium constant of reaction (8) 
M reaction modulus, Eq. (16) 
m stoichiometric coefficient 
n stoichiometric coefficient 
p stoichiometric coefficient 
q dimensionless diffusion .:oefficient, Eq. (J 3) 

r rate of formation of a species by reaction 
time 

x longitudinal coordinate 
y dimensionless concentration, Eq. (12) 
z dimensionless longitudinal coordinate, Eq. (J J ) 
Z dimensionless parameter, Eq. (23) 
o thickness of the diffusional film 
)! dimensionless parameter, Eq. (14) 
rP enhancement factor, Eq. (16) 
e dimensionless length, Eq. (30) 

Subscripts 

i reaction component generally 
A, B, C, D, reaction components A, B, C, D 

Superscripts 

o in the bulk 
* at the interface 
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